Sous la direction de Vincent Jullien
mercredi 1er juillet 2015,
The tremendous success of indivisibles methods in geometry in the seventeenth century, responds to a vast project : installation of infinity in mathematics. The pathways by the authors are very diverse, as are the characterizations of indivisibles, but there are significant factors of unity between the various doctrines of indivisible ; the permanence of the language used by all authors is the strongest sign.
These efforts do not lead to the stabilization of a mathematical theory (with principles or axioms, theorems respecting these first statements, followed by applications to a set of geometric situations), one must nevertheless admire the magnitude of the results obtained by these methods and highlights the rich relationships between them and integral calculus.
The present book aims to be exhaustive since it analyzes the works of all major inventors of methods of indivisibles during the seventeenth century, from Kepler to Leibniz. It takes into account the rich existing literature usually devoted to a single author. This book results from the joint work of a team of specialists able to browse through this entire important episode in the history of mathematics and to comment it.
The list of authors involved in indivisibles´ field is probably sufficient to realize the richness of this attempt ; one meets Kepler, Cavalieri, Galileo, Torricelli, Gregoire de Saint Vincent, Descartes, Roberval, Pascal, Tacquet, Lalouvère, Guldin, Barrow, Mengoli, Wallis, Leibniz, Newton.
ISBN : 978-3-319-00130-2
Professeur d’histoire et philosophie des sciences.
Philosophie et sciences à l’à¢ge classique.
à‰pistémologie des sciences de la nature.
Mathématiques à l’à¢ge classique.
Courrier électronique : Vincent Jullien
Préface de Marco Panza
Post-face de l’ouvrage « Ce que peuvent les sciences ».
Notes de cours
M2 LOPHISS (Paris 7, ENS)
P.U.F. – collection «  Philosophies  »
Sous la direction de V. Jullien, E. Nicolaidis et M. Blay
Histoire d’un engendrement mutuel